Semantic similarity measurement using historical google search patterns
نویسندگان
چکیده
منابع مشابه
Semantic similarity measurement using historical google search patterns
Computing the semantic similarity between terms (or short text expressions) that have the same meaning but which are not lexicographically similar is an important challenge in the information integration field. The problem is that techniques for textual semantic similarity measurement often fail to deal with words not covered by synonym dictionaries. In this paper, we try to solve this problem ...
متن کاملFlexible Similarity Search of Semantic Vectors Using Fulltext Search Engines
Vector representations and vector space modeling (VSM) play a central role in modern machine learning. In our recent research we proposed a novel approach to ‘vector similarity searching’ over dense semantic vector representations. This approach can be deployed on top of traditional inverted-index-based fulltext engines, taking advantage of their robustness, stability, scalability and ubiquity....
متن کاملSemantic Vector Encoding and Similarity Search Using Fulltext Search Engines
Vector representations and vector space modeling (VSM) play a central role in modern machine learning. We propose a novel approach to ‘vector similarity searching’ over dense semantic representations of words and documents that can be deployed on top of traditional inverted-index-based fulltext engines, taking advantage of their robustness, stability, scalability and ubiquity. We show that this...
متن کاملComputing Semantic Similarity Measure between Words Using Web Search Engine
Semantic Similarity measures between words plays an important role in information retrieval, natural language processing and in various tasks on the web. In this paper, we have proposed a Modified Pattern Extraction Algorithm to compute the supervised semantic similarity measure between the words by combining both page count method and web snippets method. Four association measures are used to ...
متن کاملText Similarity Using Google Tri-grams
The purpose of this paper is to propose an unsupervised approach for measuring the similarity of texts that can compete with supervised approaches. Finding the inherent properties of similarity between texts using a corpus in the form of a word n-gram data set is competitive with other text similarity techniques in terms of performance and practicality. Experimental results on a standard data s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Systems Frontiers
سال: 2013
ISSN: 1387-3326,1572-9419
DOI: 10.1007/s10796-012-9404-7